Evolution of a complex disease resistance gene cluster in diploid Phaseolus and tetraploid Glycine.
نویسندگان
چکیده
We used a comparative genomics approach to investigate the evolution of a complex nucleotide-binding (NB)-leucine-rich repeat (LRR) gene cluster found in soybean (Glycine max) and common bean (Phaseolus vulgaris) that is associated with several disease resistance (R) genes of known function, including Rpg1b (for Resistance to Pseudomonas glycinea1b), an R gene effective against specific races of bacterial blight. Analysis of domains revealed that the amino-terminal coiled-coil (CC) domain, central nucleotide-binding domain (NB-ARC [for APAF1, Resistance genes, and CED4]), and carboxyl-terminal LRR domain have undergone distinct evolutionary paths. Sequence exchanges within the NB-ARC domain were rare. In contrast, interparalogue exchanges involving the CC and LRR domains were common, consistent with both of these regions coevolving with pathogens. Residues under positive selection were overrepresented within the predicted solvent-exposed face of the LRR domain, although several also were detected within the CC and NB-ARC domains. Superimposition of these latter residues onto predicted tertiary structures revealed that the majority are located on the surface, suggestive of a role in interactions with other domains or proteins. Following polyploidy in the Glycine lineage, NB-LRR genes have been preferentially lost from one of the duplicated chromosomes (homeologues found in soybean), and there has been partitioning of NB-LRR clades between the two homeologues. The single orthologous region in common bean contains approximately the same number of paralogues as found in the two soybean homeologues combined. We conclude that while polyploidization in Glycine has not driven a stable increase in family size for NB-LRR genes, it has generated two recombinationally isolated clusters, one of which appears to be in the process of decay.
منابع مشابه
Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes.
Alleles or tightly linked genes at the soybean (Glycine max L. Merr.) Rpg1 locus confer resistance to strains of Pseudomonas syringae pv. glycinea that express the avirulence genes avrB or avrRpm1. We have previously mapped Rpg1-b (the gene specific for avrB) to a cluster of resistance genes (R genes) with diverse specificities in molecular linkage group F. Here, we describe the high-resolution...
متن کاملGenetic Variability and Karyotype Analysis for 13 Accessions of Lolium multiflorum
Genetic variations were studied for 13 accessions of Lolium multiflorum using cytogenetical traits. Karyotype was prepared for 5 metaphases cells of each accession and the traits of total length (TL), long arm (LA), short arm (SA), arm ratio (AR) and centromer index (CI) were determined by micromeasure software. Six accessions were diploid and seven accessions were tetraploid, the basic chromos...
متن کاملTwo different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat.
Comparative study of disease resistance genes in crop plants and their relatives provides insight on resistance gene function, evolution and diversity. Here, we studied the allelic diversity of the Lr10 leaf rust resistance gene, a CC-NBS-LRR coding gene originally isolated from hexaploid wheat, in 20 diploid and tetraploid wheat lines. Besides a gene in the tetraploid wheat variety 'Altar' tha...
متن کاملEnhanced Expression of Genes Involved in the Biosynthesis Pathway of Tanshinones in Tetraploid Plants of Salvia Officinalis L.
Extended Abstract Introduction and Objective: Polyploidy is one of the main factors in plant adaptation that can increase secondary metabolites production in plants. Salvia officinalis L. is a perennial plant from the Lamiaceae family with a long history of use in the medicinal industry. Tanshinones are crucial active compounds biosynthesized in Salvia. This study was aimed to analyze the expr...
متن کاملEvolutionary dynamics and preferential expression of homeologous 18S-5.8S-26S nuclear ribosomal genes in natural and artificial glycine allopolyploids.
Polyploidy is an important evolutionary process in plants, but much remains to be learned about the evolution of gene expression in polyploids. Evolution and expression of the 18S-5.8S-26S ribosomal gene family was investigated at homeologous loci in the Glycine subgenus Glycine perennial soybean polyploid complex, which consists of several diploid genomes that have formed allopolyploids in var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 159 1 شماره
صفحات -
تاریخ انتشار 2012